51 cm (20.1 inches), 12801024 pixels, 8bit/color, Incorporated backlight and Inverter Ultra wide viewing angle

DESCRIPTION

NL128102AC31-02 is a TFT (Thin Film Transistor) active matrix color liquid crystal display (LCD) comprising amorphous silicon TFT attached to each signal electrode, a driving circuit and a backlight.
NL128102AC31-02 has a built-in backlight with the inverter.
The 51 cm (20.1 Inches) diagonal display area contains 1280×1024 pixel and can display 16,777,216 colors simultaneously.

FEATURES

- Ultra-wide viewing angle
- High luminance ($200 \mathrm{~cd} / \mathrm{m} 2 \mathrm{typ}$.)
- Low reflection and wide color gamut
- LVDS interface (THC63LVDF84A x 2 chips, THine Electronics, Inc.) 8bit per color
- Incorporated direct type backlight (12 CCFLs with inverter)

APPLICATIONS

- Engineering work station, desk-top type of PC
- Display terminals for control system
- Monitors for process controller

STRUCTURE AND FUNCTIONS

A color TFT (thin film transistor) LCD module is comprised of a TFT liquid crystal panel structure, LSIs for driving the TFT array, and a backlight assembly. The TFT panel structure is created by sandwiching liquid crystal material in the narrow gap between a TFT array glass substrate and a color filter glass substrate. After the driver LSIs are connected to the panel, the backlight assembly is attached to the backside of the panel.

RGB (red, green, blue) data signals from a source system is modulated into a form suitable for active matrix addressing by the onboard signal processor and sent to the driver LSIs which in turn addresses the individual TFT cells.

Acting as an electro-optical switch, each TFT cell regulates light transmission from the backlight assembly when activated by the data source. By regulating the amount of light passing through the array of red, green, and blue dots, color images are created with clarity.

BLOCK DIAGRAM

Remark GND (Signal Ground) is connected to FG (Frame Ground) in the LCD module. Neither GND nor FG is connected to GNDB (Backlight Ground). GND, FG and GNDB should be connected in the system ground.

OUTLINE OF CHARACTERISTICS (at room temperature)	
Display area	399.36 (H) $\times 319.49$ (V)
Drive system	a-Si TFT active matrix
Display colors	16,777,216 colors
Number of pixels	1280×1024 pixels
Pixel arrangement	RGB vertical stripe
Pixel pitch	0.312 (H) 0.312 (V) mm
Module size	470.0 (H) x 382.0 (V) $\times 42.5$ (D) mm
Weight	2320 g (typ.)
Contrast ratio	250: 1 (typ.)
Viewing angle (more than the contrast ratio of $10: 1$)	
	- Horizontal : 85° (typ., left side, right side) - Vertical : 85° (typ., up side, down side)
Designed viewing direction	- Optimum grayscale ($r=2.2$): perpendicular
Polarizer pencil-hardness	3H (min., at JIS K5400)
Color gamut	60 \% (typ., at center, to NTSC)
Response time	45 ms (typ.), "black" to "white"
Luminance	$200 \mathrm{~cd} / \mathrm{m}^{2}$ (typ.)
Signal system	RGB 8-bit signals, Synchronous signals (Hsync, Vsync), Dot clock (CLK), DE
	LVDS interface (THC63LVDF84A, THine Electronics, Inc.)
Supply voltage	12 V (Logic, LCD driiv ng), 12 V (Backlight)
Backlight	Direct light type: 12 CCFLs with inverter
	[Replaceable parts]
	- Lamp holder type No.: 201LHS02
	- Inverter type No.: 201PW021
Power consumption	46.6 W (typ.)

GENERAL SPECIFICATIONS

Item	Specification	Unit
Module size	$470.0 \pm 1.0(\mathrm{H}) \quad 382 \pm 1.0(\mathrm{~V}) \quad 42.5 \mathrm{max} .(\mathrm{D})$	mm
Display area	$399.36(\mathrm{H}) \times 319.49(\mathrm{~V})$, Diagonal $51 \mathrm{~cm}(20.1$ inchies)	mm
Number of pixels	$1280(\mathrm{H}) \quad 1024(\mathrm{~V})$	pixel
Dot pitch	$0.104(\mathrm{H}) \quad 0.312(\mathrm{~V})$	mm
Pixel pitch	$0.312(\mathrm{H}) \quad 0.312(\mathrm{~V})$	mm
Pixel arrangement	RGB (Red, Green, Blue) vertical stripe	-
Display colors	$16,777,216(8 b i t ~ p e r ~ c o l o r)$	color
Weight	$2430($ max. $)$	g

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Rating	Unit	Remarks
Supply voltage	VdD	-0.3 to +14.0	V	$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
	VdoB	-0.3 to +14.0	V	
Logic input voltage (LCD)	Vi	-0.3 to + 3.6	V	$\mathrm{V} D \mathrm{D}=12 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$
Logic input voltage (backlight-BRTC signal)	ViBL1	-0.3 to +5.5	V	$\mathrm{V} D \mathrm{DB}=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
Logic input voltage (backlight-BRTL signal)	ViBL2	-0.3 to +1.5	V	
Storage temp.	Tst	-20 to +60	${ }^{\circ} \mathrm{C}$	-
Operating temp.	Top	0 to +55	${ }^{\circ} \mathrm{C}$	Module surface
Humidity (No condensation)	-	95\% relative humidity	-	Ta $40^{\circ} \mathrm{C}$
	-	85\% relative humidity	-	$40<\mathrm{Ta} \quad 50^{\circ} \mathrm{C}$
	-	70\% rel	-	$50<\mathrm{T} \quad 55^{\circ} \mathrm{C}$
	-	Absolute humidity shall not exceed $\mathrm{T}_{\mathrm{a}}=55^{\circ} \mathrm{C}, 70 \%$ relative humidity level.	-	$\mathrm{Ta}_{\mathrm{a}}>55^{\circ} \mathrm{C}$

Note: The temperature is measured at the surface of display.

ELECTRICAL CHARACTERISTICS

(1) Logic, LCD driving
$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$

Parameter	Symbol	MIN.	TYP.	MAX.	Unit	Remarks
Supply voltage	VDD	11.4	12.0	12.6	V	-
Ripple voltage	$V_{\text {rp }}$	-	-	100	mV	for VDD
LVDS signal input "L" voltage	VIL	-100	-	-	mV	$\mathrm{VCM}=1.2 \mathrm{~V}$ VCM: Common mode voltage in LVDS driver
LVDS signal input "H" voltage	VIH	-	-	+100	mV	
Input voltage	V_{i}	0	-	2.4	V	-
Terminating resistor	Rt	-	100	-		-
Supply current	IDD	-	380 Note	1000	mA	$V_{D D}=12.0 \mathrm{~V}$

Note Checkered flag pattern (in EIAJ ED-2522)

(2) Backlight

$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$

Parameter	Symbol	MIN.	TYP.	MAX.	Unit	Remarks
Supply voltage	VodB	10.8	12.0	13.2	V	
Logic input "L" current	liBL1	-1.6	-	-	mA	for BRTC
Logic input "H" current	liBL1	-	-	3.5	mA	
Logic input "L" current	liBL2	-610	-	-	A	for BRTC, PWSEL
Logic input "H" current	liBL2	-	-	440	A	
Supply current	lodB	-	3500	4200	mA	Vob $=12 \mathrm{~V}$ (at max. luminance)

3500 (mA) typ

Maximum luminance control: 100 \%
Minimum luminance control: 20 \%
Luminance control frequency: 243 to $297 \mathrm{~Hz}, 270 \mathrm{~Hz}$ (typ.)

Note: The power supply line (VDDB and GNDB) has a large ripple noise while dimming. Certain consideration should be taken to reduce the noise.

SUPPLY VOLTAGE SEQUENCE

Notes 1. Data: pixel data and Pixel clock.
2. The supply voltage for input signals should be the same as Vdd.
3. Apply $V_{D D B}$ within the LCD operation period. When the backlight turns on before LCD operation or the LCD operation turns off before the backlight turns off, the display may momentarily become white.
However, 12 V for backlight should be started up within 800 ms , otherwise, the protection circuit makes the backlight turns off.
4. The backlight on/off signal (BRTC) should be controlled while logic signals are supplied.
5. Do not input " H " for PWSE, when VddB is OV or BRTC is "L".
6. When the power is off, please keep whole signals low level or high impedance.

INTERFACE PIN CONNECTION

(1) Interface connector for signal and power

Part No. : 53780-2010
Adaptable socket: 51146-2000
Supplier : Molex Incorporated
CN1

Pin No.	Symbol	Signal type	Function
1	NC	Non-connection	Keep the termainal open
2	NC		
3	GND	Ground	Connect to system ground
4	GND		
5	DAO-	Odd pixlel data input 0	Odd pixel data input 0 (LVDS level)
6	DAO+		
7	GND	Ground	Connect to system ground
8	DA1-	Odd pixlel data input 1	Odd pixel data input 1 (LVDS level)
9	DA1+		
10	GND	Ground	Connect to system ground
11	DA2-	Odd pixlel data input 2	Odd pixel data input 2 (LVDS level)
12	DA2+		
13	GND	Ground	Connect to system ground
14	CKA-	Odd pixlel clock input	Odd pixel clock input (LVDS level)
15	CKA+		
16	GND	Ground	Connect to system ground
17	DАЗ-	Odd pixlel data input 3	Odd pixel data input 3 (LVDS level)
18	DA3+		
19	GND	Ground	Connect to system ground
20	NC	Non-connection	Keep the termainal open

Notes 1. Signal ground for logic and LCD driving. GND should be connected to system ground. Neither GND nor GNDB is connected to frame.
2. Connect all pins and GND terminal. Cable use 100 twist pair.

Connect all pins (except 1, 2, 20) to avoid noise issue.
Use 100 twist pair wires for the cable.

CN1: Figure from socket view

Part No. : 53780-3010
A daptable socket : 51146-3000
Supplier : M olex Incorporated.
CN2

Pin No.	Symbols	Signal type	Function
1	N.C.	Non-connection	Keep the terminal open
2	N.C.		
3	GND	Ground	Connect to system ground
4	GND		
5	DB0-	Even Pixel Data0	Even pixel data input 0 (LVD S level)
6	DB0+		
7	GND	Ground	Connect to system ground
8	DB1-	Even Pixel Data1	Even pixel data input 1 (LVD S level)
9	DB1+		
10	GND	Ground	Connect to system ground
11	DB2-	Even Pixel Data 2	Even pixel data input 2 (LVD S level)
12	DB2+		
13	GND	Ground	Connect to system ground
14	CKB-	Even Pixel Cl ock	Even pixel clock input (LVD S level)
15	CKB+		
16	GND	Ground	Connect to system ground
17	DB3-	Even Pixel Data 3	Even pixel data input 3 (LVD S level)
18	DB3+		
19	GND	Ground	Connect to system ground
20	Res.	Reserved	Keep the terminal open
21	Res.		
22	Res.		
23	Res.		
24	GND	Ground	Connect to system ground
25	GND		
26	GND		
27	N.C.	Non-connection	Keep the terminal open
28	VDD	+12V Power Supply	$12 \mathrm{~V} \pm 5 \%$
29	VdD		
30	VDD		

Note 1: GND is signal ground for logic and LCD driving. GND is connected to FG (Frame Ground) in the LCD module. Neither GND nor FG is connected to GNDB (Backlight Ground). GND, FG and GNDB should be connected to the system ground.

Remark: Connect all pins except 1, 2 and 27 to avoid noise issues. Use 100 ohm twist pair wires for the cable.

CN2: Figure from stock view

1	2	$\cdots \cdots \cdots \cdots \cdots$	29	30

(2) Connector for backlight unit

Part No. : DF3-8P-2H CN201: Figure from socket view
Adaptable socket: DF3-8S-2C
Supplier : HIROSE Electric Co., Ltd.

CN201

Pin No.	Symbols	Signal type	Function
1	GNDB	Ground for backlight	Note 1
2	GNDB		
3	GNDB		
4	GNDB		
5	VddB	12 V power supply	+12V+/-10\%
6	VddB		
7	VddB		
8	VddB		

Note 1. GNDB is not connected to GND or the frame.
Part No. ; IL-Z-9PL1-SMTY
A daptable socket : IL-Z-9S-S125C3
Supplier : Japan Aviation Electronics Industry Limited (JAE) CN202

Pin No.	Symbols	Signal type	Function
1	GNDB	Ground for backlight	Note 1
2	GNDB	Kon-connection	Keep the terminal open
3	N.C.	Backli ght ON/OFF control signal	"H" or "O pen" "L"
4	BRTC	Backlight on Backlight off	
5	BRTH	Luminance control signal	Note 2
6	BRTL	Luminance control signal	Note 2
7	BRTP	Luminance control signal	Note 1
8	GNDB	Ground for backlight	Note 2
9	PWSEL	Luminance control select signal	

Note 1. GNDB is not connected to GND or the frame.
2. There are three ways of controlling luminance.

1) A way of luminance control by a variable resistor (PWSEL="H" or "Open", BRTP="Open")

The variable resistor for luminance control should be 10 k type, and zero point of the resistor corresponds to the minimum of luminance.

Mating variable resistor : $10 \mathrm{~K} \quad \pm 5 \%$, B curve
Maximum luminance (100%): $R=10 \mathrm{~K}$
Minimum luminance (30%) : $\mathrm{R}=0$
2) A way of luminance control by voltage (PWSEL="H" or "Open", BRTP="Open")

BRTH should be fixed to 0 V to control luminance by voltage. The range of input voltage between BRTL and GNDB is as follows.
Maximum luminance (100\%): 1 V (typ.)
Minimum luminance (30\%) : 0 V
3) A way of luminance control by PWM

Outside control is valid, when PWSEL="L" and input signal for BRTP. Luminance can be controlled by the duty value of input signal for BRTP.
Duty $=100 \%$: luminance is maximum.
Duty $=20 \%$: luminance is minimum.

Parameters	Symbols	Mi n.	Typ.	Max.	Unit	Remarks
Frequency	1/tPW	185	-	325	Hz	-
"L" period	tLPW	-	-	50	ms	-
Pulse-width	tHPW/tPW	20	-	100	$\%$	at Max. luminance (100\%)
Input voltage	ViL	0	-	0.8	V	-
	ViH	2.0	-	5.25	V	-

Regarding set up for frequency, refer to the below method.
Set up frequency $=V$ sync frequency $x \quad(n+0.25)$ or ($n+0.75$)
Adopt the frequency evaluating the display quality, because the display will be disturbed depend on frequency.
(3) Display position of input data

D (0, 0)	D (1, 0)	---	D (X, 0)	---	D (1022, 0)	D (1023, 0)
D (0, 1)	D (1, 1)	---	D (X, 1)	---	D (1022, 1)	D (1023, 1)
1	+	$\xrightarrow[+]{+}$	\|	$\xrightarrow[+]{+}$	1	1
D (0, Y)	D (1, Y)	--	D (X, Y)	--	D (1022, Y)	D (1023, Y)
I	I	$\xrightarrow{1}$	1	$\xrightarrow{1}+$	1 1	+
D (0, 766)	D (1, 766)	---	D (X, 766)	---	D (1022, 766)	D (1023, 766)
D (0, 767)	D (1, 767)	---	D (X, 767)	---	D (1022, 767)	D (1023, 767)

METHOD OF CONNECTION FOR THC63LVDF63A

Notes 1. 100 twist pair.

DISPLAY COLORS vs. INPUT DATA SIGNALS

Note Colors are developed in combination with 8-bit signals (256 step in grayscale) of each primary red, green, and blue color.
This process can result in up to 16,777,216 (256 x 256×256) colors.

INPUT SIGNAL TIMING
(1) Input signal specifications for LCD controller

Note These values are in the timing regulation of THC63LVDM83A (THine).
The product equivalent to THC63LVDM83A (THine) is recommended to the input of LVDS transmitter.
The Timing regulation prescribes in the input of the LVDS transmitter.
(2) Definition of input signal timing

*1: Refer to the specification of LVDS manufacture for the detail timing design.
(3) Display positions of input data

Odd Pixel: RA = R DATA Even Pixel: RB =R D ATA
Odd Pixel: GA= G DA TA Even Pixel: GB=G DAT A
Odd Pixel: BA = B DATA Even Pixel : BB =B D ATA

$D(1,1)$	$D(1,2)$		$D(1,1280)$
$D(2,1)$	$D(2,2)$		$D(2,1280)$
$D(1024,1)$	$D(1024,2)$		$D(1024,1280)$

Memo

Intentionally blank

OPTICAL CHARACTERISTICS
$\left(\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}} \mathrm{B}=12 \mathrm{~V}\right)$

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit	Remark
Luminance	Lumax	"White"	150	200	-	$\mathrm{cd} / \mathrm{m}^{2}$	Note $\mathbf{1}$
Contrast ratio	CR	$\mathrm{X}= \pm 0^{\circ}, \mathrm{Y}= \pm 0^{\circ}$, at center	150	250	-	-	Note $\mathbf{2}$
Luminance uniformity	-	Maximum	-	1.1	1.30	-	Note 3

Reference data

Parameter		Symbol	Condition	MIN.	TYP.	MAX.	Unit	Remark
Chromaticity Coordinate			$Y= \pm 0^{\circ} \quad X= \pm 0^{\circ}$	-		-	-	
Viewing angle range	Horizontal	X+	$C R>10, \quad Y= \pm 0^{\circ}$	70	85	-	deg.	Note 4
		X-	$C R>10, \quad Y= \pm 0^{\circ}$	70	85	-	deg.	
	Vertical	Y+	$C R>10, \quad X= \pm 0^{\circ}$	70	85	-	deg.	
		Y-	$C R>10, \quad X= \pm 0^{\circ}$	70	85	-	deg.	
Color gamut		C	To NTSC	50	60	-	\%	-
Response time		ton	White to black	-	45	TBD	ms	Note 5
		toff	Black to white	-	35	TBD		

Notes 1. The luminance is measured after 20 minutes from the module works, with all pixels in white. Typical value is measured after luminance saturation.

2. The contrast ratio is calculated by using the following formula.

Contrast ratio $(C R)=\frac{\text { Luminance with all pixels in white }}{\text { Luminance with all pixels in black }}$
The Luminance is measured in darkroom.
3. The luminance is measured at near the five points shown below.

4. Definitions of viewing angle are as follows.

5. Definition of response time is as follows.

Photo-detector output signal is measured when the luminance changes "white" to "black" or "black" to "white".

RELIABILITY TEST

Test item	Test condition
High temperature/humidity operation Note 1	$60 \pm 2^{\circ} \mathrm{C}, 60 \%$ relative humidity 240 hours Display data is black.
Heat cycle (operation) Note 1	$<1>0^{\circ} \mathrm{C} \pm 3^{\circ} \mathrm{C} \cdots 1$ hour $55^{\circ} \mathrm{C} \pm 3^{\circ} \mathrm{C} \ldots 1$ hour <2> 50 cycles, 4 hours/cycle $<3>$ Display data is black.
Thermal shock (non-operation) Note 1	```<1> -20}\mp@subsup{0}{}{\circ}\textrm{C}\pm\mp@subsup{3}{}{\circ}\textrm{C}\cdots30\mathrm{ minutes 60}\mp@subsup{}{}{\circ}\textrm{C}\pm\mp@subsup{3}{}{\circ}\textrm{C}\cdots30\mathrm{ minutes <2> 100 cycles <3> Temperature transition time within 5 minutes```
Vibration (non-operation) Notes 1, 2	$<1>5-100 \mathrm{~Hz}, 1.2 \mathrm{G}$ 1 minute/cycle X, Y, Z direction <2> 50 times each direction
Mechanical shock (non-operation) Notes 1, 2	$<1>30 \mathrm{G}, 11 \mathrm{~ms}$ $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ direction <2> 3 times each direction
ESD (operation) Notes 1, 3	$150 \mathrm{pF}, 150, \pm 10 \mathrm{kV}$ 9 places on a panel 10 times each place at one-second intervals
Dust (operation) Note 1	15 kinds of dust (JIS Z 8901) Hourly 15 seconds stir, 8 times repeat

Notes 1. Display function is checked by the same condition as LCD module out-going inspection.
2. Physical damage.
3. Discharge points "z" are shown in the figure.

GENERAL CAUTIONS

Next figures and sentence are very important. Please understand these contents as follows.

This figure is a mark that you will get an electric shock when you make a mistake to operate.

This figure is a mark that you will get hurt when you make a mistake to operate

Do not touch an inverter, on which is stuck a caution label, while the LCD module is under the operation, because of dangerous high voltage.
(1) Caution when taking out the module
a) Pick the pouch only, in taking out module from a carrier box.
(2) Cautions for handling the module
a) As the electrostatic discharges may break the LCD module, handle the LCD module with care against electrostatic discharges.
b)
 As the LCD panel and backlight element are made from fragile glass material, impulse and pressure to the LCD module should be avoided.
c) As the surface of polarizer is very soft and easily scratched, use a soft dry cloth without chemicals for cleaning.
d) Do not pull the interface connectors in or out while the LCD module is operating.
e) Put the module display side down on a flat horizontal plane.
f) Handle connectors and cables with care.
g) When the module is operating, do not lose CLK, Hsync or Vsync signal. If any one of these signals is lost, the LCD panel would be damaged.
h) The torque to mounting screw should never exceed $0.392 \mathrm{~N} \cdot \mathrm{~m}(4 \mathrm{kgf} \cdot \mathrm{cm})$.
(3) Cautions for the atmosphere
a) Dew drop atmosphere should be avoided.
b) Do not store and/or operate the LCD module in a high temperature and/or high humidity atmosphere. Storage in an anti-static pouch and under the room temperature atmosphere is recommended.
c) This module uses cold cathod fluorescent lamp. Therefore, the life time of lamp becomes short if the module is operated under the low temperature environment.
d) Do not operate the LCD module in a high magnetic field.
(4) Caution for the module characteristics
a) Do not apply fixed pattern data signal for a long time to the LCD module. It may cause image sticking. Please use screen savers if the display pattern is fixed more than one hour.
b) This module has the retardation film which may cause the variation of the color hue in the different viewing angles. The ununiformity may appear on the screen under the high temperature operation.
c) The light vertical stripe may be observed depending on the display pattern. This is not defects or malfunctions.
d) The noise from the inverter circuit may be observed in the luminance control mode. This is not defects or malfunctions.
(5) Other cautions
a) Do not disassemble and/or reassemble LCD module.
b) Do not readjust variable resistors or switches in the module.
c) When returning the module for repair or etc, please pack the module properly to avoid any damages. We recommend using the original shipping packages.
d) In case that the scan converter is used to convert VGA signal to NTSC, it is recommended using the framememory type, not the line-memory.

Liquid Crystal Display has the following specific characteristics. There are not defects or malfunctions.

The optical characteristics of this module may be affected by the ambient temperature.
This module has cold cathode tube for backlight. Optical characteristics, like luminance or uniformity, will be changed by the progress in time.

Uneven brightness and/or small spots may be observed depending on different display patterns.

OUTLINE DRAWING (1/2): Front View (Unit: mm)

OUTLINE DRAWING (2/2): Rear View (Unit: mm)

[^0]
[^0]: No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.
 NEC Corporation does not assume any liability for infringement of patents. Copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.
 While NEC Corporation has been making continuous effort to enhance the reliability of its Electronic Components, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC Electronic Components, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.

 NEC devices are classified into the following three quality grades:
 "Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.
 Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots

 Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
 Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.
 The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.
 Anti-radioactive design is not implemented in this product.

